The kinetic energy of an object is the energy which it possesses due to its motion. It is defined as the work needed to accelerate a body of the given mass from rest to its current velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes. The same amount of work would be done by the body in decelerating from its current speed to a state of rest.
The speed, and thus the kinetic energy of a single object is completely frame-dependent (relative): it can take any non-negative value, by choosing a suitable inertial frame of reference. For example, a bullet racing past an observer has kinetic energy in the reference frame of this observer, but the same bullet is stationary, and so has zero kinetic energy, from the point of view of an observer moving with the same velocity as the bullet By contrast, the total kinetic energy of a system of objects cannot be reduced to zero by a suitable choice of the inertial reference frame, unless all the objects have the same velocity. In any other case the total kinetic energy has a non-zero minimum, as no inertial reference frame can be chosen in which all the objects are stationary. This minimum kinetic energy contributes to the system's invariant mass, which is independent of the reference frame.
According to classical mechanics (ie ignoring relativistic effects) the kinetic energy of a non-rotating object of mass m traveling at a speed v is mv2/2. This will be a good approximation provided v is much less than the speed of light.
No comments:
Post a Comment